#### **GMAO** Seminar

March 3, 2008

## Soil moisture data assimilation:

# Error modeling, adaptive filtering, and the contribution of soil moisture retrievals to land data assimilation products

R. Reichle<sup>1,2</sup>, W. Crow<sup>3</sup>, R. Koster<sup>1,2</sup>, C. Keppenne<sup>2</sup>, S. Mahanama<sup>1,2</sup>, and H. Sharif<sup>4</sup>

Rolf.Reichle@nasa.gov

- 1 Goddard Earth Sciences and Technology Center, UMBC
- 2 Global Modeling and Assimilation Office, NASA-GSFC
- 3 Hydrology and Remote Sensing Lab, USDA-ARS
- 4 Civil Engineering Dept., University of Texas, San Antonio

#### **Outline**

- Motivation
  - Soil moisture data assimilation
- Part 1 (doi:10.1029/2007WR006357)
  - Impact of input error parameters on soil moisture estimates
  - Adaptive filtering
- Part 2 (doi:10.1029/2007GL031986)
  - Contribution of soil moisture retrievals to land assimilation products

http://userpages.umbc.edu/~reichle/

#### Introduction

Large-scale soil moisture is needed, for example, for water cycle studies and for initializing weather/climate models. It is available from:



#### Global assimilation of AMSR-E soil moisture retrievals



|                         |    | Anomaly time series correlation coeff. with in situ data [-] (with 95% confidence interval) |         |         | Confidence levels:<br>Improvement of<br>assimilation over |         |
|-------------------------|----|---------------------------------------------------------------------------------------------|---------|---------|-----------------------------------------------------------|---------|
|                         | N  | Satellite                                                                                   | Model   | Assim.  | Satellite                                                 | Model   |
| Surface soil moisture   | 23 | .38±.02                                                                                     | .43±.02 | .50±.02 | >99.99%                                                   | >99.99% |
| Root zone soil moisture | 22 | n/a                                                                                         | .40±.02 | .46±.02 | n/a                                                       | >99.99% |

Assimilation product agrees better with ground data than satellite or model alone.

Modest increase may be close to maximum possible with *imperfect* in situ data.

Reichle et al., *JGR*, 2007

#### **Outline**

- Motivation
  - Soil moisture data assimilation
- Part 1 (doi:10.1029/2007WR006357)
  - Impact of input error parameters on soil moisture estimates
  - Adaptive filtering
- Part 2 (doi:10.1029/2007GL031986)
  - Contribution of soil moisture retrievals to land assimilation products

http://userpages.umbc.edu/~reichle/

# Input error parameters Q and R



## Input error parameters Q and R

Weights themselves are subject to error!!! Wrong weights may lead to poor estimates. Retrieval error Model error covariance R covariance Q (subject to error) (subject to error) Soil Model soil moisture moisture Assimilation retrievals (subject to (subject error) to error) "Optimal" soil

moisture

## Synthetic assimilation experiment

Investigate impact of wrong model and obs. error inputs on assimilation estimates:



#### Red-Arkansas river basin

Red-Arkansas river basin (308 catchments)

Hourly forcing data (1981–2000)

NASA Catchment land surface model (identical twin experiment)





West: Dry with sparse vegetation

East: Wet with dense vegetation

## Impact of Q and R on assimilation estimates

#### RMSE of assimilation estimates v. truth for:

forecast error std-dev

Each "+" symbol represents one 19-year assim. experiment over the Red-Arkansas with a unique combination of input model and observation error parameters.



Q = model error (including errors in precip, radiation, and soil moisture tendencies)

P = P(Q) = soil moisture error variance

## Impact of Q and R on assimilation estimates

#### RMSE of assimilation estimates v. truth for:



- "True" input error covariances yield minimum estimation errors.
- Wrong model and obs. error covariance inputs degrade assimilation estimates.
- In most cases, assimilation still better than open loop (OL).

## Impact of Q and R on assimilation estimates



Root zone more sensitive than surface soil moisture.

# Impact of Q and R on assimilation estimates (fluxes)





- Fluxes more sensitive to wrong error parameters than soil moisture.
- Sensible/latent heat more sensitive to model error cov than obs error cov (probably related to ensemble propagation).

#### **Outline**

- Motivation
  - Soil moisture data assimilation
- Part 1 (doi:10.1029/2007WR006357)
  - Impact of input error parameters on soil moisture estimates
  - Adaptive filtering
- Part 2 (doi:10.1029/2007GL031986)
  - Contribution of soil moisture retrievals to land assimilation products

http://userpages.umbc.edu/~reichle/

## Diagnostics of filter performance and adaptive filtering

Find true Q, R by enumeration?

- RMSE plots require "truth" (not usually available).
- Too expensive computationally.

Use diagnostics that are available within the assimilation system.

Filter update:  $x^+ = x^- + K(y - x^-)$ 

 $K = P (P + R)^{-1} = Kalman gain || x^+ = "analysis"$ 

 $E[(y - x^{-}) (y - x^{-})^{T}] = P + R$ **Diagnostic:** 

 $x^-$  = model forecast

y = observation

innovations ≡ obs – model prediction (internal diagnostic)

state err cov + obs err cov (controlled by inputs)



Example: Average "obs. minus model prediction" distance is much larger than assumed input uncertainties

time

## Diagnostics of filter performance and adaptive filtering

Find true Q, R by enumeration?

- RMSE plots require "truth" (not usually available).
- Too expensive computationally.

Use diagnostics that are available within the assimilation system.

Filter update:  $x^+ = x^- + K(y - x^-)$ 

 $K = P (P + R)^{-1} = Kalman gain || x^+ = "analysis"$ 

 $E[(y - x^{-})(y - x^{-})^{T}] = P + R$ **Diagnostic:** 

x<sup>-</sup> = model forecast

v = observation

innovations ≡ obs – model prediction diagnostic) log10(misfit.innov)

state err cov + obs err cov (controlled by inputs)



sart(R0)

Contours: misfit between diagnostic and what it "should" be.

Adaptive filter: Nudge input error parameters (Q, R) during assimilation to minimize misfit.

# Diagnostics of filter performance and adaptive filtering

Find true Q, R by enumeration?

- RMSE plots require "truth" (not usually available).
- Too expensive computationally.

Use diagnostics that are available within the assimilation system.

Filter update:  $x^+ = x^- + K(y - x^-)$ 

 $K = P (P + R)^{-1} = Kalman gain || x^+ = "analysis"$ 

 $E[(y - x^{-})(y - x^{-})^{T}] = P + R$ **Diagnostic:** 

x<sup>-</sup> = model forecast

y = observation

innovations ≡ obs – model prediction diagnostic) log10(misfit.innov)

state err cov + obs err cov (controlled by inputs)



sart(R0)

Contours: misfit between diagnostic and what it "should" be.

Adaptive filter: Nudge input error parameters (Q, R) during assimilation to minimize misfit.

Diagnostic 1:  $E[(y - x^+)(y - x^-)^T] = R$ 

Diagnostic 2:  $E[(x^+ - x^-) (y - x^-)^T] = P(Q)$ 

Initialize:  $x_{0,i}^+$ ,  $Q_1 = Q_0$ ,  $q_{1,i}$ ,  $R_1 = R_0$ ,  $\alpha_{0,0} = \alpha_{R,0} = 1$  $MA[u v^{T}]_{0}=MA[HPH^{T}]_{0}=MA[w v^{T}]_{0}=MA[R]_{0}=R_{0}$ 

Propagate model:  $x_{t,i}^- = f(x_{t-1,i}^+, q_{t,i}^+)$ 

Forecast error cov.:  $P_{+} = E\{(x_{+} - E\{x_{+} - \})^{2}\}$ 

 $K_{t} = P_{t}H_{t}^{T}(H_{t}P_{t}H_{t}^{T} + R_{t})^{-1}$ Kalman gain:

Analysis update:  $x_{t,i}^{+} = x_{t,i}^{-} + K_t (y_{t,i} - H_t x_{t,i}^{-})$ 

Innovations:  $v_{+} = E\{y_{+} - H_{+} x_{+} \}$ 

Analysis departures:  $w_t = E\{y_{t,i} - H_t x_{t,i}^+\}$ 

Analysis increments:  $u_t = E\{H_t(x_{t,i}^+ - x_{t,i}^-)\}$ 

 $MA[w v^T]_t = (1-\gamma) MA[w v^T]_{t-1} + \gamma w_t v_t^T$  $MA[HPH^T]_t = (1-\gamma)MA[HPH^T]_{t-1} + \gamma H_tP_tH_t^T$ t=t+1  $MA[R]_t = (1-\gamma)MA[R]_{t-1}$ + γ R<sub>t</sub>

 $f_O = \beta MA[u v^T]_t / MA[HPH^T]_t$ ß =1.06 =  $MA[w v^T]_t / MA[R]_t$ 

**c**.)  $\alpha_{O,t} = \alpha_{O,t-1} \max(\min(f_O, f_{max}), f_{min})$  $\alpha_{R,t} = \alpha_{R,t-1} \max(\min(f_R, f_{max}), f_{min})$ 

 $\alpha_{min}$ =0.01  $\alpha_{Q,t} = \max(\min(\alpha_{Q,t}, \alpha_{\max}), \alpha_{\min})$  $\alpha_{\text{max}}$ =100  $\alpha_{R,t} = \max(\min(\alpha_{R,t}, \alpha_{\max}), \alpha_{\min})$ 

 $Q_{t+1} = \alpha_{Q,t} Q_0$  (and generate  $q_{t,i}$ )  $R_{t+1} = \alpha_{R,t} R_0$ 

# Adaptive algorithm

1. EnKF propagation and update

2. Moving average of filter diagnostics

Adaptive scaling coefficients

- Adapted *Dee* et al. for land
- Cheap

=0.02

=0.005

 $f_{min} = (1+\delta)^{-1}$ 

 $f_{\text{max}} = (1 + \delta)$ 

Need parameters

Reichle et al., doi:10.1029/2007WR006357

## Convergence of adaptive scaling factors



- Adaptive scaling factors generally converge to true values (thick lines).
- Convergence is slow (order of years).
- Spatial variability (thin lines) much greater for alphaQ than for alphaR.

## Adaptive v. non-adaptive EnKF (soil moisture)



- Adaptive filter: Map experiment onto contour plot based on initial guess of R, P(Q).
- Adaptive filter yields improved assimilation estimates for initially wrong model and observation error inputs (except for  $R_0=0$ ).

## Adaptive v. non-adaptive EnKF (fluxes)

Contours: RMSE of assim. est. v. truth



- Adaptive filter generally yields improved flux estimates.
- Degradation
  when R is
  severely
  underestimated.
  → Simply choose
  large R at the
  start and let the
  filter adapt it.

Reichle et al., doi:10.1029/2007WR006357

# Adaptive v. non-adaptive EnKF (filter diagnostics)



- Adaptive filter (by design) improves innovations stats.
- Adaptive filter retrieves obs error std (except for R<sub>0</sub>=0).
- On balance, adaptive filter improves estimate of error bars on assimilation product (surface soil moisture).

## Adaptive filter summary

Wrong model and observation error inputs degrade assimilation estimates.

Degradation quantified with synthetic experiment over Red-Arkansas river basin.

#### **Adaptive EnKF:**

- + Generally improves assimilation estimates.
- + Better at estimating obs. error cov. R than model error cov. Q.
- + Cheap.

#### **Future applications:**

Use for AMSR-E soil moisture assimilation.

Estimates of AMSR-E obs. error variance (not provided by official NASA product).

#### **Outline**

- Motivation
  - Soil moisture data assimilation
- Part 1 (doi:10.1029/2007WR006357)
  - Impact of input error parameters on soil moisture estimates
  - Adaptive filtering
- Part 2 (doi:10.1029/2007GL031986)
  - Contribution of soil moisture retrievals to land assimilation products

http://userpages.umbc.edu/~reichle/

#### Problem statement

Design problem for future satellite missions (eg. NASA Soil Moisture Active Passive "SMAP" mission)

How uncertain can retrievals be and still add useful information in the assimilation system?

|                       |    | Anomaly time series correlation coeff. with in situ data [-] (with 95% confidence interval) |         |         |  |
|-----------------------|----|---------------------------------------------------------------------------------------------|---------|---------|--|
|                       | N  | Satellite                                                                                   | Model   | Assim.  |  |
| Surface soil moisture | 23 | .38±.02                                                                                     | .43±.02 | .50±.02 |  |

Example: If target skill=0.5 and model skill=0.43, need retrieval skill≥0.38.

Goal: Contour plot based on many such triplets of numbers.

#### Previous work: Soil moisture retrieval OSSE



## Soil moisture assimilation OSSE: Design



## Soil moisture assimilation OSSE: Design



## Soil moisture assimilation OSSE: Implementation



## Soil moisture assimilation OSSE: Implementation



#### Skill of soil moisture estimates



Skill is measured in terms of R (=anomaly time series correlation coefficient against truth).

Contours show the skill of the assimilation product

X-axis: Skill of retrievals

Y-axis: Skill of model product

Each plus sign indicates the result of one 19-year assimilation integration over the entire Red-Arkansas domain.

#### Skill of soil moisture estimates





- The skill of the soil moisture (surface and root zone) assimilation product increases with the skill of the retrievals and the skill of the model.
- The skill of the assimilation product is more sensitive to model skill than to retrieval skill.

#### Skill improvement (soil moisture)

Skill improvement of assimilation over model ( $\Delta R$ ) (surface soil moisture)



Skill improvement of assimilation over model ( $\Delta R$ ) (root zone soil moisture)



- Assimilation of soil moisture retrievals adds skill (relative to model product).
- Even retrievals of poor quality contribute information to the assimilation product.

#### Skill improvement (soil moisture)



- Assimilation of soil moisture retrievals adds skill (relative to model product).
- Even retrievals of poor quality contribute information to the assimilation product.
- Published AMSR-E and SMMR assimilation products are consistent with expected skill levels for surface soil moisture, to a lesser degree also for root zone soil moisture.

  Reichle et al., doi:10.1029/2007GL031986

### Skill improvement (ET)

# Skill improvement of assimilation over model ( $\Delta R$ ) (monthly ET)



- Assimilation of surface soil moisture retrievals yields, on average, modest improvements in ET estimates.
- Negative ΔR related to technicalities (EnKF bias issues and adaptive filtering).

### **DA-OSSE** summary

#### General DA-OSSE framework developed:

- Quantify the information added to land assimilation products by satellite retrievals for detailed and comprehensive error budget analyses for data assimilation products.
- Adaptive filtering is major component of the DA-OSSE.
- Success of DA-OSSE depends on realism of imposed model errors.

#### Soil moisture assimilation study for the Red-Arkansas:

- Even retrieval data sets of poor quality contribute information to the assimilation product.
- Published AMSR-E and SMMR assimilation products are consistent with expected skill levels for surface soil moisture, to a lesser degree also for root zone soil moisture.

#### Future applications:

- Extending the DA-OSSE to continental/global scales is straightforward but computationally demanding.
- Same applies for higher-resolution soil moisture retrievals (e.g. from active/passive MW sensor).